Document Chat Interface
Build intelligent chat interfaces that allow users to query and interact with documents using natural language, transforming static documents into interactive knowledge sources.
Overview
A document chat interface combines three capabilities:
- Document Processing - Extract and prepare documents
- Semantic Understanding - Understand questions and find relevant content
- Conversational Interface - Maintain context and provide natural responses
Common Applications
- PDF Q&A: Answer questions about research papers, reports, books
- Email Search: Find information in email archives conversationally
- GitHub Explorer: Ask questions about code repositories
- Knowledge Base: Interactive access to company documentation
- Contract Review: Query legal documents with natural language
- Research Assistant: Explore academic papers interactively
Architecture
Document Source
↓
Document Processor
├→ Extract text
├→ Process content
└→ Generate embeddings
↓
Vector Database
↓
Chat Interface ← User Question
├→ Retrieve relevant content
├→ Maintain conversation history
└→ Generate response
Core Components
1. Document Sources
See examples/document_processors.py for implementations:
PDF Documents
- Extract text from PDF pages
- Preserve document structure and metadata
- Handle scanned PDFs with OCR (pytesseract)
- Extract tables (pdfplumber)
GitHub Repositories
- Extract code files from repositories
- Parse repository structure
- Process multiple file types
Email Archives
- Extract email metadata (from, to, subject, date)
- Parse email body content
- Handle multiple mailbox formats
Web Pages
- Extract page text and structure
- Preserve heading hierarchy
- Extract links and navigation
YouTube/Audio
- Get transcripts from YouTube videos
- Transcribe audio files
- Handle multiple formats
2. Document Processing
See examples/text_processor.py for implementations:
Text Extraction & Cleaning
- Remove extra whitespace and special characters
- Smart text chunking with overlap
- Intelligent sentence boundary detection
Metadata Extraction
- Extract title, author, date, language
- Calculate word count and document statistics
- Track document source and format
Structure Preservation
- Keep heading hierarchy in chunks
- Preserve section context
- Enable hierarchical retrieval
3. Chat Interface Design
See examples/conversation_manager.py for implementations:
Conversation Management
- Maintain conversation history with size limits
- Track message metadata (timestamps, roles)
- Provide context for LLM integration
- Clear history as needed
Question Refinement
- Expand implicit references in questions
- Handle pronouns and context references
- Improve question clarity with previous context
Response Generation
- Use document context for answering
- Maintain conversation history in prompts
- Provide source citations
- Handle out-of-scope questions
4. User Experience Features
Citation & Sources
def format_response_with_citations(response: str, sources: List[Dict]) -> str:
"""Add source citations to response"""
formatted = response + "\n\n**Sources:**\n"
for i, source in enumerate(sources, 1):
formatted += f"[{i}] Page {source['page']} of {source['source']}\n"
if 'excerpt' in source:
formatted += f" \"{source['excerpt'][:100]}...\"\n"
return formatted
Clarifying Questions
def generate_follow_up_questions(context: str, response: str) -> List[str]:
"""Suggest follow-up questions to user"""
prompt = f"""
Based on this Q&A, generate 3 relevant follow-up questions:
Context: {context[:500]}
Response: {response[:500]}
"""
follow_ups = llm.generate(prompt)
return follow_ups
Error Handling
def handle_query_failure(question: str, error: Exception) -> str:
"""Handle when no relevant documents found"""
if isinstance(error, NoRelevantDocuments):
return (
"I couldn't find information about that in the documents. "
"Try asking about different topics like: "
+ ", ".join(get_main_topics())
)
elif isinstance(error, ContextTooLarge):
return (
"The answer requires too much context. "
"Can you be more specific about what you'd like to know?"
)
else:
return f"I encountered an issue: {str(error)[:100]}"
Implementation Frameworks
Using LangChain
from langchain.document_loaders import PDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
# Load document
loader = PDFLoader("document.pdf")
documents = loader.load()
# Split into chunks
splitter = CharacterTextSplitter(chunk_size=1000)
chunks = splitter.split_documents(documents)
# Create embeddings
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(chunks, embeddings)
# Create chat chain
llm = ChatOpenAI(model="gpt-4")
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
return_source_documents=True
)
# Chat interface
chat_history = []
while True:
question = input("You: ")
result = qa({"question": question, "chat_history": chat_history})
print(f"Assistant: {result['answer']}")
chat_history.append((question, result['answer']))
Using LlamaIndex
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, ChatMemoryBuffer
from llama_index.llms import ChatMessage, MessageRole
# Load documents
documents = SimpleDirectoryReader("./docs").load_data()
# Create index
index = GPTVectorStoreIndex.from_documents(documents)
# Create chat engine with memory
chat_engine = index.as_chat_engine(
memory=ChatMemoryBuffer.from_defaults(token_limit=3900),
llm="gpt-4"
)
# Chat loop
while True:
question = input("You: ")
response = chat_engine.chat(question)
print(f"Assistant: {response}")
Using RAG-Based Approach
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
# Load and embed documents
model = SentenceTransformer('all-MiniLM-L6-v2')
documents = load_documents("document.pdf")
embeddings = model.encode(documents)
# Create FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings).astype('float32'))
# Chat function
def chat(question):
# Embed question
q_embedding = model.encode(question)
# Retrieve documents
k = 5
distances, indices = index.search(
np.array([q_embedding]).astype('float32'), k
)
# Get relevant documents
context = " ".join([documents[i] for i in indices[0]])
# Generate response
response = llm.generate(
f"Context: {context}\nQuestion: {question}\nAnswer:"
)
return response
Best Practices
Document Handling
- ✓ Support multiple formats (PDF, TXT, docx, etc.)
- ✓ Handle large documents efficiently
- ✓ Preserve document structure
- ✓ Extract metadata
- ✓ Handle multiple languages
- ✓ Implement OCR for scanned PDFs
Conversation Quality
- ✓ Maintain conversation context
- ✓ Ask clarifying questions
- ✓ Cite sources
- ✓ Handle ambiguity
- ✓ Suggest follow-up questions
- ✓ Handle out-of-scope questions
Performance
- ✓ Optimize retrieval speed
- ✓ Implement caching
- ✓ Handle large document sets
- ✓ Batch process documents
- ✓ Monitor latency
- ✓ Implement pagination
User Experience
- ✓ Clear response formatting
- ✓ Ability to cite sources
- ✓ Document browser/explorer
- ✓ Search suggestions
- ✓ Query history
- ✓ Export conversations
Common Challenges & Solutions
Challenge: Irrelevant Answers
Solutions:
- Improve retrieval (more context, better embeddings)
- Validate answer against context
- Ask clarifying questions
- Implement confidence scoring
- Use hybrid search
Challenge: Lost Context Across Turns
Solutions:
- Maintain conversation memory
- Update retrieval based on history
- Summarize long conversations
- Re-weight previous queries
Challenge: Handling Long Documents
Solutions:
- Hierarchical chunking
- Summarize first
- Question refinement
- Multi-hop retrieval
- Document navigation
Challenge: Limited Context Window
Solutions:
- Compress retrieved context
- Use document summarization
- Hierarchical retrieval
- Focus on most relevant sections
- Iterative refinement
Advanced Features
Multi-Document Analysis
def compare_documents(question: str, documents: List[str]):
"""Analyze and compare across multiple documents"""
results = []
for doc in documents:
response = query_document(doc, question)
results.append({
"document": doc.name,
"answer": response
})
# Compare and synthesize
comparison = llm.generate(
f"Compare these answers: {results}"
)
return comparison
Interactive Document Exploration
class DocumentExplorer:
def __init__(self, documents):
self.documents = documents
def browse_by_topic(self, topic):
"""Find documents by topic"""
pass
def get_related_documents(self, doc_id):
"""Find similar documents"""
pass
def get_key_terms(self, document):
"""Extract key terms and concepts"""
pass
Resources
Document Processing Libraries
- PyPDF: PDF handling
- python-docx: Word document handling
- BeautifulSoup: Web scraping
- youtube-transcript-api: YouTube transcripts
Chat Frameworks
- LangChain: Comprehensive framework
- LlamaIndex: Document-focused
- RAG libraries: Vector DB integration
Implementation Checklist
- Choose document source(s) to support
- Implement document loading and processing
- Set up vector database/embeddings
- Build chat interface
- Implement conversation management
- Add source citation
- Handle edge cases (large docs, OCR, etc.)
- Implement error handling
- Add performance monitoring
- Test with real documents
- Deploy and monitor
Getting Started
- Start Simple: Single PDF, basic chat
- Add Features: Multi-document, conversation history
- Improve Quality: Better chunking, retrieval
- Scale: Support more formats, larger documents
- Polish: UX improvements, error handling